By Topic

Design of a fault-tolerant coarse-grained

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jafri, S.M.A.H. ; IRISA, Univ. of Rennes 1, Lannion, France ; Piestrak, S.J. ; Sentieys, O. ; Pillement, Sebastien

This paper considers the possibility of implementing low-cost hardware techniques which would allow to tolerate temporary faults in the datapaths of coarse-grained reconfigurable architectures (CGRAs). Our goal was to use less hardware overhead than commonly used duplication or triplication methods. The proposed technique relies on concurrent error detection by using residue code modulo 3 and re-execution of the last operation, once an error is detected. We have chosen the DART architecture as a vehicle to study the efficiency of this approach to protect its datapaths. Simulation results have confirmed hardware savings of the proposed approach over duplication.

Published in:

Quality Electronic Design (ISQED), 2010 11th International Symposium on

Date of Conference:

22-24 March 2010