Cart (Loading....) | Create Account
Close category search window

Clustered channel characterization for indoor polarized MIMO systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Quitin, F. ; OPERA Dept., Univ. Libre de Bruxelles (ULB), Brussels, Belgium ; Oestges, C. ; Horlin, F. ; De Doncker, P.

A cluster-based channel model is presented that includes polarization characteristics. Measurements have been carried out in an indoor environment at 3.6 GHz using a dual-polarized transmitter and a tri-polarized receiver. Individual propagation paths are extracted using the SAGE algorithm, and a cross-polar discrimination (XPD) per ray is defined. Clusters are identified in the co-elevation-azimuth-delay domain, with an automatic clustering algorithm. The cluster properties are investigated and polarization characteristics are identified on a per-cluster basis. Finally, the obtained model is simulated and extraction-independent parameters are compared with experimental parameters for validation.

Published in:

Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on

Date of Conference:

13-16 Sept. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.