By Topic

A new approach to anti-fog design for polymeric insulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Electric field strength and leakage current density in the shank region of a polluted polymeric insulator may cause local dry-banding, with a risk of long-term degradation from partial-arc discharges. In a novel approach to dry-band control, the characteristics of silicone rubber surfaces with a textured finish are investigated and, depending on the geometry chosen for the texture, two useful objectives can be achieved. First, the increase of surface area can both reduce the leakage current density in the vulnerable shank region, and also increase the longitudinal creepage distance. Secondly, the damage arising from surface discharges can be mitigated. The principles of the proposed anti-fog design are described in detail. While complete prototype insulators are now being specified for fabrication, this paper reports preliminary results from tests using rectangular samples, which show an improvement in performance. The tests are of two kinds: a) inclined-plane, to assess erosion and tracking on rectangular samples of insulation materials. Such samples have been prepared both with a conventional plane surface and with a textured surface for comparative tests; b) clean-fog tests that use an initially dry pollution layer of known salinity. Here, plane and textured samples have been used for comparative tests, where leakage current and discharge activity are monitored during the generation of the fog.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:17 ,  Issue: 2 )