Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

The Optimal Air Gap Between the Pancake Windings in a HTS Magnet Consisting of Insert and Outsert Magnet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Myunghun Kang ; Dept. of Electr. Eng., Soonchunhyang Univ., Asan, South Korea ; Myunghwan Ku ; Heejoon Lee ; Gueesoo Cha
more authors

In a high temperature superconducting magnet consisting of pancake windings, the perpendicular magnetic field considerably reduces the value of the critical current of the outer pancake windings due to anisotropy. An air gap was inserted between each pancake winding in this paper to reduce the decrement of the critical current in each pancake winding. In a low temperature superconducting magnet, the central magnetic field decreases when there is an air gap between the pancake windings. On the other hand, the central magnetic field of a HTS magnet increases when an air gap is provided. The properties of the HTS insert/outsert magnet having an air gap between the pancake windings are examined in this paper. YBCO wire and BSCCO wire were used in the insert and the outsert magnets, respectively. An E - J relation and the evolution strategy were adopted to calculate the optimum critical currents of both magnets. The calculation results showed that there was an optimum air gap which maximized the central magnetic field. The optimum air gap was dependent on the specifications of the HTS magnet.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:20 ,  Issue: 3 )