By Topic

Anonymized Data: Generation, models, usage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cormode, G. ; AT&T Labs.-Res., Florham Park, NJ, USA ; Srivastava, D.

Data anonymization techniques enable publication of detailed information, which permits ad hoc queries and analyses, while guaranteeing the privacy of sensitive information in the data against a variety of attacks. In this tutorial, we aim to present a unified framework of data anonymization techniques, viewed through the lens of data uncertainty. Essentially, anonymized data describes a set of possible worlds that include the original data. We show that anonymization approaches generate different working models of uncertain data, and that the privacy guarantees offered by k-anonymization and l-diversity can be naturally understood in terms of the sets of possible worlds that correspond to the anonymized data. Work in query evaluation over uncertain databases can hence be used for answering ad hoc queries over anonymized data. We identify new research problems for both the Data Anonymization and the Uncertain Data communities.

Published in:

Data Engineering (ICDE), 2010 IEEE 26th International Conference on

Date of Conference:

1-6 March 2010