By Topic

Analog Beamforming in MIMO Communications With Phase Shift Networks and Online Channel Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Venkateswaran, V. ; Fac. of the Electr. Eng., Math. & Comput. Sci., Delft Univ. of Technol., Delft, Netherlands ; van der Veen, A.-J.

In multiple-input multiple-output (MIMO) systems, the use of many radio frequency (RF) and analog-to-digital converter (ADC) chains at the receiver is costly. Analog beamformers operating in the RF domain can reduce the number of antenna signals to a feasible number of baseband channels. Subsequently, digital beamforming is used to capture the desired user signal. In this paper, we consider the design of the analog and digital beamforming coefficients, for the case of narrowband signals. We aim to cancel interfering signals in the analog domain, thus minimizing the required ADC resolution. For a given resolution, we will propose the optimal analog beamformer to minimize the mean squared error between the desired user and its receiver estimate. Practical analog beamformers employ only a quantized number of phase shifts. For this case, we propose a design technique to successively approximate the desired overall beamformer by a linear combination of implementable analog beamformers. Finally, an online channel estimation technique is introduced to estimate the required statistics of the wireless channel on which the optimal beamformers are based.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 8 )