By Topic

Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Erbium and holmium lasers are attractive for minimally invasive surgical applications as they operate at wavelengths where tissues exhibit strong absorption due to their water content and because these wavelengths are transmittable through optical fibers. In this study, the basic physical mechanisms underlying tissue ablation and the laser-induced tissue effects using pulsed Er:YSGG (2.79 μm) and Ho:YAG (2.12 μm) laser radiation are presented and compared, Q-switched (τ=40 ns, E⩽50 mJ) and free-running (τ=250 and 400 μs) Er:YSGG (E=100 mJ) and Ho:YAG (E⩽1 J) laser energy was delivered in water via a 400-μm fiber. The dimension and lifetime of the expanding and collapsing bubbles and the laser-induced pressure in water after each laser pulse were measured with fast-flash videography and time-resolved pressure measurements. Depending on the absorption coefficient, pulse energy, and pulse duration, three different regimes were distinguished: evaporation, tensile-stress-induced cavitation, and explosive vaporization. In vitro tissue effects, ablation depth, and extent of tissue damage on meniscus treated under water and on cornea treated in air were investigated and examined histologically. Er:YSGG radiation, due to its 100 times higher absorption than Ho:YAG radiation, exhibited a high tissue ablation efficiency with a relatively small zone of coagulated tissue (Q-switched 4-10 μm, free-running less than 100 μm), whereas the coagulated tissue zone was 300-1000 μm after free-running and 100-120 μm after Q-switched Ho:YAG laser impact

Published in:

Quantum Electronics, IEEE Journal of  (Volume:32 ,  Issue: 12 )