By Topic

Cognitive User Interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Young, S. ; Professor Steve Young FREng Information Engineering Division Cambridge University

This article argues that future generations of computer-based systems will need cognitive user interfaces to achieve sufficiently robust and intelligent human interaction. These cognitive user interfaces will be characterized by the ability to support inference and reasoning, planning under uncertainty, short-term adaptation, and long-term learning from experience. An appropriate engineering framework for such interfaces is provided by partially observable Markov decision processes (POMDPs) that integrate Bayesian belief tracking and reward-based reinforcement learning. The benefits of this approach are demonstrated by the example of a simple gesture-driven interface to an iPhone application. Furthermore, evidence is provided that humans appear to use similar mechanisms for planning under uncertainty.

Published in:

Signal Processing Magazine, IEEE  (Volume:27 ,  Issue: 3 )