By Topic

Space-based wireless sensor networks: Design issues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vladimirova, Tanya ; Dept. of Electron. Eng., Univ. of Surrey, Guildford, UK ; Bridges, C.P. ; Paul, J.R. ; Malik, S.A.
more authors

This paper is concerned with a satellite sensor network, which applies the concept of terrestrial wireless sensor networks to space. Constellation design and enabling technologies for picosatellite constellations such as distributed computing and intersatellite communication are discussed. The research, carried out at the Surrey Space Centre, is aimed at space weather missions in low Earth orbit (LEO). Distributed satellite system scenarios based on the flower constellation set are introduced. Communication issues of a space based wireless sensor network (SB-WSN) in reference to the Open Systems Interconnection (OSI) networking scheme are discussed. A system-on-a-chip computing platform and agent middleware for SB-WSNs are presented. The system-on-a-chip architecture centred around the LEON3 soft processor core is aimed at efficient hardware support of collaborative processing in SB-WSNs, providing a number of intellectual property cores such as a hardware accelerated Wi-Fi MAC and transceiver core and a Java co-processor. A new configurable intersatellite communications module for picosatellites is outlined.

Published in:

Aerospace Conference, 2010 IEEE

Date of Conference:

6-13 March 2010