By Topic

An active suspension system for lunar crew mobility

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Bluethmann, B. ; Software, Robot. & Simulation Div., NASA Johnson Space Center, Houston, TX, USA ; Herrera, E. ; Hulse, A. ; Figuered, J.
more authors

This paper describes the design and control of the first generation active suspension for NASA's Chariot rover and Lunar Electric Rover (LER). Within the paper is a general overview of the needs and benefits of active suspensions for crew mobility systems on the lunar surface. In the spectrum of active suspensions, the Chariot system falls into the category of a series active or low bandwidth suspension. The passive suspension elements absorb the high frequency content of driving over rugged terrain and the active element sets the height of the suspension allowing the vehicle to conform to the terrain. This suspension system is capable of raising and lowering the vehicle, adjusting roll and pitch attitude for docking operations, leveling the chassis against gravity, and balancing the force across the six wheels during low speed operations. In addition to the existing system, initial results of an incremental design upgrade are discussed and future considerations for suspension systems for the lunar surface are described.

Published in:

Aerospace Conference, 2010 IEEE

Date of Conference:

6-13 March 2010