By Topic

Real-time trajectory generation: Improving the optimality and speed of an inverse dynamics method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rick Drury ; Cranfield University, Bedfordshire MK43 0AL, England ; Antonios Tsourdos ; Alastair Cooke

The optimality of a solution to a minimum-time aircraft trajectory generation problem depends on the closeness of the generated airspeed to the maximum airspeed that satisfies all path and boundary constraints. Airspeed is typically determined by nonlinear constrained optimization, hence the degree of the airspeed parameterization affects optimality and computational speed. An alternative approach, directly evaluating maximum feasible airspeed, is described and compared with the optimization approach. Results using Chebyshev polynomials show that, in isolation, parameterizations of degree 8-10 deliver a good trade-off between high degree for optimality and low degree for speed. However, directly evaluating airspeed is closer to optimality and not prone to convergence to a local solution. Accuracy of evaluation of the maxima of constrained variables is investigated using global Chebyshev, local quadratic, and local cubic, interpolation, and results show that quadratic interpolation in particular is computationally efficient, increasing speed while maintaining accuracy.

Published in:

Aerospace Conference, 2010 IEEE

Date of Conference:

6-13 March 2010