Cart (Loading....) | Create Account
Close category search window

The LHCb Readout System and Real-Time Event Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

21 Author(s)

The LHCb Experiment is a hadronic precision experiment at the LHC accelerator aimed at mainly studying b-physics by profiting from the large b-anti-b-production at LHC. The challenge of high trigger efficiency has driven the choice of a readout architecture allowing the main event filtering to be performed by a software trigger with access to all detector information on a processing farm based on commercial multi-core PCs. The readout architecture therefore features only a relatively relaxed hardware trigger with a fixed and short latency accepting events at 1 MHz out of a nominal proton collision rate of 30 MHz, and high bandwidth with event fragment assembly over Gigabit Ethernet. A fast central system performs the entire synchronization, event labelling and control of the readout, as well as event management including destination control, dynamic load balancing of the readout network and the farm, and handling of special events for calibrations and luminosity measurements. The event filter farm processes the events in parallel and reduces the physics event rate to about 2 kHz which are formatted and written to disk before transfer to the offline processing. A spy mechanism allows processing and reconstructing a fraction of the events for online quality checking. In addition a 5 Hz subset of the events are sent as express stream to offline for checking calibrations and software before launching the full offline processing on the main event stream.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:57 ,  Issue: 2 )

Date of Publication:

April 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.