By Topic

Optimization of Wind Turbine Performance With Data-Driven Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Andrew Kusiak ; Intelligent Systems Laboratory, The University of Iowa, Iowa City, IA, USA ; Zijun Zhang ; Mingyang Li

This paper presents a multiobjective optimization model of wind turbine performance. Three different objectives, wind power output, vibration of drive train, and vibration of tower, are used to evaluate the wind turbine performance. Neural network models are developed to capture dynamic equations modeling wind turbine performance. Due to the complexity and nonlinearity of these models, an evolutionary strategy algorithm is used to solve the multiobjective optimization problem. Data sets at two different frequencies, 10 s and 1 min, are used in this study. Computational results with the two data sets are reported. Analysis of these results points to a reduction of wind turbine vibrations potentially larger than the gains reported in the paper. This is due to the fact that vibrations may occur at frequencies higher than ones reflected in the 10-s data collected according to the standard practice used in the wind industry.

Published in:

IEEE Transactions on Sustainable Energy  (Volume:1 ,  Issue: 2 )