By Topic

Simulation of Spatial Sensor Characteristics in the Context of the EnMAP Hyperspectral Mission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Segl, K. ; Remote Sensing Sect., GFZ German Res. Centre for Geosci., Potsdam, Germany ; Guanter, L. ; Kaufmann, H. ; Schubert, J.
more authors

The simulation of remote sensing images is a valuable tool for defining future Earth observation systems, optimizing instrument parameters, and developing and validating data-processing algorithms. A scene simulator for optical Earth observation data has been developed within the Environmental Mapping and Analysis Program (EnMAP) hyperspectral mission. It produces EnMAP-like data following a sequential processing approach consisting of five independent modules referred to as reflectance, atmospheric, spatial, spectral, and radiometric modules. From a modeling viewpoint, the spatial module is the most complex. The spatial simulation process considers the satellite-target geometry, which is adapted to the EnMAP orbit and operating characteristics, the instrument spatial response, and the sources of spatial nonuniformity (keystone, telescope distortion and smile, and detector coregistration). The spatial module of the EnMAP scene simulator is presented in this paper. The EnMAP spatial and geometric characteristics will be described, the simulation methodology will be presented in detail, and the capability of the EnMAP simulator will be shown by illustrative examples.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 7 )