By Topic

Bandwidth Improvement in Multimode Optical Fibers Via Scattering From Core Inclusions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Arash Mafi ; Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, WI, USA

We show that a controlled intentional mode coupling induced via scattering from core inclusions can substantially improve the bandwidth of graded index multimode fibers with centerline defect. We present a comprehensive analysis of the impact of the dielectric constant, size, density, and location of micrometer size inclusions on the bandwidth and attenuation of these fibers. We show that using a proper design, the bandwidth of a 1-km-long fiber can improve from 693-MHz to more than 2.5-GHz with less than 1-dB additional power loss. We also show that in practice, it is possible to obtain the desired level of mode coupling by exposing the photosensitive core of the fiber to a UV laser, therefore creating the micrometer size inclusions after the draw process.

Published in:

Journal of Lightwave Technology  (Volume:28 ,  Issue: 10 )