By Topic

Action and Gait Recognition From Recovered 3-D Human Joints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Junxia Gu ; Dept. of Electron. Eng., Tsinghua Univ., Beijing, China ; Xiaoqing Ding ; Shengjin Wang ; Wu, Y.

A common viewpoint-free framework that fuses pose recovery and classification for action and gait recognition is presented in this paper. First, a markerless pose recovery method is adopted to automatically capture the 3-D human joint and pose parameter sequences from volume data. Second, multiple configuration features (combination of joints) and movement features (position, orientation, and height of the body) are extracted from the recovered 3-D human joint and pose parameter sequences. A hidden Markov model (HMM) and an exemplar-based HMM are then used to model the movement features and configuration features, respectively. Finally, actions are classified by a hierarchical classifier that fuses the movement features and the configuration features, and persons are recognized from their gait sequences with the configuration features. The effectiveness of the proposed approach is demonstrated with experiments on the Institut National de Recherche en Informatique et Automatique Xmas Motion Acquisition Sequences data set.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:40 ,  Issue: 4 )
Biometrics Compendium, IEEE