By Topic

Low-Power Low-Voltage Current Readout Circuit for Inductively Powered Implant System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Haider, M.R. ; Sonoma State Univ., Rohnert Park, CA, USA ; Islam, S.K. ; Mostafa, S. ; Mo Zhang
more authors

Low voltage and low power are two key requirements for on-chip realization of wireless power and data telemetry for applications in biomedical sensor instrumentation. Batteryless operation and wireless telemetry facilitate robust, reliable, and longer lifetime of the implant unit. As an ongoing research work, this paper demonstrates a low-power low-voltage sensor readout circuit which could be easily powered up with an inductive link. This paper presents two versions of readout circuits that have been designed and fabricated in bulk complementary metal-oxide semiconductor (CMOS) processes. Either version can detect a sensor current in the range of 0.2 μA to 2 μA and generate square-wave data signal whose frequency is proportional to the sensor current. The first version of the circuit is fabricated in a 0.35-μ m CMOS process and it can generate an amplitude-shift-keying (ASK) signal while consuming 400 μ W of power with a 1.5-V power supply. Measurement results indicate that the ASK chip generates 76 Hz to 500 Hz frequency of a square-wave data signal for the specified sensor current range. The second version of the readout circuit is fabricated in a 0.5-μ m CMOS process and produces a frequency-shift-keying (FSK) signal while consuming 1.675 mW of power with a 2.5-V power supply. The generated data frequency from the FSK chip is 1 kHz and 9 kHz for the lowest and the highest sensor currents, respectively. Measurement results confirm the functionalities of both prototype schemes. The prototype circuit has potential applications in the monitoring of blood glucose level, lactate in the bloodstream, and pH or oxygen in a physiological system/environment.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:4 ,  Issue: 4 )