By Topic

Local Capacity H_{\infty } Control for Production Networks of Autonomous Work Systems With Time-Varying Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hamid Reza Karimi ; Department of Engineering, Faculty of Engineering and Science, University of Agder, Grimstad, Norway ; Neil A. Duffie ; Sergey Dashkovskiy

This paper considers the problem of local capacity H control for a class of production networks of autonomous work systems with time-varying delays in the capacity changes. The system under consideration is modeled in a discrete-time singular form. Attention is focused on the design of a controller gain for the local capacity adjustments which maintains the work-in-progress (WIP) in each work system in the vicinity of planned levels and guarantees the asymptotic stability of the system and reduces the effect of the disturbance input on the controlled output to a prescribed level. In terms of a matrix inequality, a sufficient condition for the solvability of this problem is presented using an appropriate Lyapunov function, which depends on the size of the delay and is solved by existing convex optimization techniques. When this matrix inequality is feasible, the controller gain can be found by using LMI Toolbox Matlab. Finally, numerical results are provided to demonstrate the proposed approach.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:7 ,  Issue: 4 )