By Topic

Comparison of Optimal and Intelligent Sway Control for a Lab-Scale Rotary Crane System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahmad, M.A. ; Fac. of Electr. & Electron. Eng., Univ. Malaysia Pahang, Kuantan, Malaysia ; Samin, R.E. ; Zawawi, M.A.

This paper presents investigations of sway feedback control approaches for a rotary crane system with disturbance effect in the dynamic system. Linear Quadratic Regulator (LQR) controller and Proportional-Derivative (PD)-type Fuzzy Logic controller are the techniques used in this investigation to actively control the sway of rotary crane system. A lab-scale rotary crane system is considered and the dynamic model of the system is derived using the Euler-Lagrange formulation. A complete analysis of simulation results for each technique is presented in time domain and frequency domain respectively. Performances of the controller are examined in terms of sway suppression and disturbances cancellation. Finally, a comparative assessment of the impact of each controller on the system performance is presented and discussed.

Published in:

Computer Engineering and Applications (ICCEA), 2010 Second International Conference on  (Volume:1 )

Date of Conference:

19-21 March 2010