By Topic

A binary wavelet decomposition of binary images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Swanson, M.D. ; Dept. of Electr. Eng., Minnesota Univ., Minneapolis, MN, USA ; Tewfik, A.H.

We construct a theory of binary wavelet decompositions of finite binary images. The new binary wavelet transform uses simple module-2 operations. It shares many of the important characteristics of the real wavelet transform. In particular, it yields an output similar to the thresholded output of a real wavelet transform operating on the underlying binary image. We begin by introducing a new binary field transform to use as an alternative to the discrete Fourier transform over GF(2). The corresponding concept of sequence spectra over GF(2) is defined. Using this transform, a theory of binary wavelets is developed in terms of two-band perfect reconstruction filter banks in GF(2). By generalizing the corresponding real field constraints of bandwidth, vanishing moments, and spectral content in the filters, we construct a perfect reconstruction wavelet decomposition. We also demonstrate the potential use of the binary wavelet decomposition in lossless image coding

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 12 )