By Topic

Image compression using binary space partitioning trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. Radha ; Philips Res. Labs., Briarcliff Manor, NY, USA ; M. Vetterli ; R. Leonardi

For low bit-rate compression applications, segmentation-based coding methods provide, in general, high compression ratios when compared with traditional (e.g., transform and subband) coding approaches. In this paper, we present a new segmentation-based image coding method that divides the desired image using binary space partitioning (BSP). The BSP approach partitions the desired image recursively by arbitrarily oriented lines in a hierarchical manner. This recursive partitioning generates a binary tree, which is referred to as the BSP-tree representation of the desired image. The most critical aspect of the BSP-tree method is the criterion used to select the partitioning lines of the BSP tree representation, In previous works, we developed novel methods for selecting the BSP-tree lines, and showed that the BSP approach provides efficient segmentation of images. In this paper, we describe a hierarchical approach for coding the partitioning lines of the BSP-tree representation. We also show that the image signal within the different regions (resulting from the recursive partitioning) can be represented using low-order polynomials. Furthermore, we employ an optimum pruning algorithm to minimize the bit rate of the BSP tree representation (for a given budget constraint) while minimizing distortion. Simulation results and comparisons with other compression methods are also presented

Published in:

IEEE Transactions on Image Processing  (Volume:5 ,  Issue: 12 )