By Topic

A Comparison between Neural Network Based and Fuzzy Logic Models for Chlorophll-a Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Malek, S. ; Inst. of Biol. Sci., Univ. of Malaya, Kuala Lumpur, Malaysia ; Salleh, A. ; Ahmad, S.M.S.

This paper describes the application of two novel computational methods such as fuzzy logic and supervised artificial neural network (ANN) to model algal biomass in tropical Putrajaya Lake and Wetlands (Malaysia). Limnological time series data collected from 2001 until 2004 was utilized using input parameters such as water temperature, pH, secchi depth, dissolved oxygen, ammoniacal nitrogen and nitrate nitrogen. Performance measure for the models developed was in terms of root mean square error (RMSE). Both models developed gave similar result with models developed using fuzzy logic approach performed slightly better compared to feed-forward artificial neural network model.

Published in:

Computer Engineering and Applications (ICCEA), 2010 Second International Conference on  (Volume:2 )

Date of Conference:

19-21 March 2010