By Topic

Design and Evaluation of MPI File Domain Partitioning Methods under Extent-Based File Locking Protocol

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wei-keng Liao ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA

MPI collective I/O has been an effective method for parallel shared-file access and maintaining the canonical orders of structured data in files. Its implementation commonly uses a two-phase I/O strategy that partitions a file into disjoint file domains, assigns each domain to a unique process, redistributes the I/O data based on their locations in the domains, and has each process perform I/O for the assigned domain. The partitioning quality determines the maximal performance achievable by the underlying file system, as the shared-file I/O has long been impeded by the cost of file system's data consistency control, particularly due to the conflicted locks. This paper proposes a few file domain partitioning methods designed to reduce lock conflicts under the extent-based file locking protocol. Experiments from four I/O benchmarks on the IBM GPFS and Lustre parallel file systems show that the partitioning method producing minimum lock conflicts wins the highest performance. The benefit of removing conflicted locks can be so significant that more than thirty times of write bandwidth differences are observed between the best and worst methods.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 2 )