By Topic

Edge Self-Monitoring for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dezun Dong ; Sch. of Comput., Nat. Univ. of Defense Technol., Changsha, China ; Xiangke Liao ; Yunhao Liu ; Changxiang Shen
more authors

Local monitoring is an effective mechanism for the security of wireless sensor networks (WSNs). Existing schemes assume the existence of sufficient number of active nodes to carry out monitoring operations. Such an assumption, however, is often difficult for a large-scale sensor network. In this work, we focus on designing an efficient scheme integrated with good self-monitoring capability as well as providing an infrastructure for various security protocols using local monitoring. To the best of our knowledge, we are the first to present the formal study on optimizing network topology for edge self-monitoring in WSNs. We show that the problem is NP-complete even under the unit disk graph (UDG) model and give the upper bound on the approximation ratio in various graph models. We provide polynomial-time approximation scheme (PTAS) algorithms for the problem in some specific graphs, for example, the monitoring-set-bounded graph. We further design two distributed polynomial algorithms with provable approximation ratio. Through comprehensive simulations, we evaluate the effectiveness of our design.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 3 )