By Topic

A Framework for Evaluating High-Level Design Methodologies for High-Performance Reconfigurable Computers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
El-Araby, E. ; Electr. & Comput. Eng. Dept., George Washington Univ., Ashburn, VA, USA ; Merchant, S.G. ; El-Ghazawi, T.

High-performance reconfigurable computers have potential to provide substantial performance improvements over traditional supercomputers. Their acceptance, however, has been hindered by productivity challenges arising from increased design complexity, a wide array of custom design languages and tools, and often overblown sales literature. This paper presents a review and taxonomy of High-Level Languages (HLLs) and a framework for the comparative analysis of their features. It also introduces new metrics and a model based on computational effort. The proposed concepts are inspired by Netwon's equations of motion and the notion of work and power in an abstract multidimensional space of design specifications. The metrics are devised to highlight two aspects of the design process: the total time-to-solution and the efficient utilization of user and computing resources at discrete time steps along the development path. The study involves analytical and experimental evaluations demonstrating the applicability of the proposed model.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 1 )