Cart (Loading....) | Create Account
Close category search window
 

Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed-Precision Multigrid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Göddeke, D. ; Dept. of Appl. Math., Tech. Univ. Dortmund, Dortmund, Germany ; Strzodka, R.

We have previously suggested mixed precision iterative solvers specifically tailored to the iterative solution of sparse linear equation systems as they typically arise in the finite element discretization of partial differential equations. These schemes have been evaluated for a number of hardware platforms, in particular, single-precision GPUs as accelerators to the general purpose CPU. This paper reevaluates the situation with new mixed precision solvers that run entirely on the GPU: We demonstrate that mixed precision schemes constitute a significant performance gain over native double precision. Moreover, we present a new implementation of cyclic reduction for the parallel solution of tridiagonal systems and employ this scheme as a line relaxation smoother in our GPU-based multigrid solver. With an alternating direction implicit variant of this advanced smoother, we can extend the applicability of the GPU multigrid solvers to very ill-conditioned systems arising from the discretization on anisotropic meshes, that previously had to be solved on the CPU. The resulting mixed-precision schemes are always faster than double precision alone, and outperform tuned CPU solvers consistently by almost an order of magnitude.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.