By Topic

Unsupervised vector image segmentation by a tree structure-ICM algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jong-Kae Fwu ; Dept. of Electr. Eng., State Univ. of New York, Stony Brook, NY, USA ; P. M. Djuric

In recent years, many image segmentation approaches have been based on Markov random fields (MRFs). The main assumption of the MRF approaches is that the class parameters are known or can be obtained from training data. In this paper the authors propose a novel method that relaxes this assumption and allows for simultaneous parameter estimation and vector image segmentation. The method is based on a tree structure (TS) algorithm which is combined with Besag's iterated conditional modes (ICM) procedure. The TS algorithm provides a mechanism for choosing initial cluster centers needed for initialization of the ICM. The authors' method has been tested on various one-dimensional (1-D) and multidimensional medical images and shows excellent performance. In this paper the authors also address the problem of cluster validation. They propose a new maximum a posteriori (MAP) criterion for determination of the number of classes and compare its performance to other approaches by computer simulations

Published in:

IEEE Transactions on Medical Imaging  (Volume:15 ,  Issue: 6 )