Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Bayesian Framework for Image Segmentation With Spatially Varying Mixtures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nikou, C. ; Dept. of Comput. Sci., Univ. of Ioannina, Ioannina, Greece ; Likas, C.L. ; Galatsanos, N.P.

A new Bayesian model is proposed for image segmentation based upon Gaussian mixture models (GMM) with spatial smoothness constraints. This model exploits the Dirichlet compound multinomial (DCM) probability density to model the mixing proportions (i.e., the probabilities of class labels) and a Gauss-Markov random field (MRF) on the Dirichlet parameters to impose smoothness. The main advantages of this model are two. First, it explicitly models the mixing proportions as probability vectors and simultaneously imposes spatial smoothness. Second, it results in closed form parameter updates using a maximum a posteriori (MAP) expectation-maximization (EM) algorithm. Previous efforts on this problem used models that did not model the mixing proportions explicitly as probability vectors or could not be solved exactly requiring either time consuming Markov Chain Monte Carlo (MCMC) or inexact variational approximation methods. Numerical experiments are presented that demonstrate the superiority of the proposed model for image segmentation compared to other GMM-based approaches. The model is also successfully compared to state of the art image segmentation methods in clustering both natural images and images degraded by noise.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 9 )