By Topic

Deformable boundary finding in medical images by integrating gradient and region information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Accurately segmenting and quantifying structures is a key issue in biomedical image analysis. The two conventional methods of image segmentation, region-based segmentation, and boundary finding, often suffer from a variety of limitations. Here the authors propose a method which endeavors to integrate the two approaches in an effort to form a unified approach that is robust to noise and poor initialization. The authors' approach uses Green's theorem to derive the boundary of a homogeneous region-classified area in the image and integrates this with a gray level gradient-based boundary finder. This combines the perceptual notions of edge/shape information with gray level homogeneity. A number of experiments were performed both on synthetic and real medical images of the brain and heart to evaluate the new approach, and it is shown that the integrated method typically performs better when compared to conventional gradient-based deformable boundary finding. Further, this method yields these improvements with little increase in computational overhead, an advantage derived from the application of the Green's theorem

Published in:

Medical Imaging, IEEE Transactions on  (Volume:15 ,  Issue: 6 )