By Topic

Design, Modeling, and Control of a Camless Valve Actuation System With Internal Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gillella, P. ; Mech. Eng. Dept., Univ. of Minnesota, Twin Cities, Minneapolis, MN, USA ; Zongxuan Sun

This paper presents the modeling and control design of a new fully flexible engine valve actuation system, which is an enabler for camless engines. Unlike existing electromechanical or servo-actuated electrohydraulic valve actuation systems, precise valve motion control is achieved using a very stiff hydromechanical internal-feedback mechanism. The entire feedback mechanism is built into the physical design of the system. The external control only activates or deactivates the feedback mechanism in real time using simple two-state valves. This helps reduce the system cost, and thus enables mass production. The trajectory of the closed-loop system is purely dependent on the design parameters of the internal-feedback system. A mathematical model of the system has been developed and validated with experimental results from a prototype system. The “area-schedule” is identified as the most critical design feature, which affects the trajectory of the closed-loop system and, therefore, needs to be designed systematically to optimize the performance of the system as well as improve its robustness. By treating this feature as the feedback-control variable, the design problem is transformed into a nonlinear optimal control problem and solved numerically using dynamic programming. The effectiveness of the proposed design procedure is verified with case studies.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:16 ,  Issue: 3 )