Cart (Loading....) | Create Account
Close category search window
 

Time–Frequency Cepstral Features and Heteroscedastic Linear Discriminant Analysis for Language Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wei-Qiang Zhang ; Dept. of Electron. Eng., Tsinghua Univ., Beijing, China ; Liang He ; Yan Deng ; Jia Liu
more authors

The shifted delta cepstrum (SDC) is a widely used feature extraction for language recognition (LRE). With a high context width due to incorporation of multiple frames, SDC outperforms traditional delta and acceleration feature vectors. However, it also introduces correlation into the concatenated feature vector, which increases redundancy and may degrade the performance of backend classifiers. In this paper, we first propose a time-frequency cepstral (TFC) feature vector, which is obtained by performing a temporal discrete cosine transform (DCT) on the cepstrum matrix and selecting the transformed elements in a zigzag scan order. Beyond this, we increase discriminability through a heteroscedastic linear discriminant analysis (HLDA) on the full cepstrum matrix. By utilizing block diagonal matrix constraints, the large HLDA problem is then reduced to several smaller HLDA problems, creating a block diagonal HLDA (BDHLDA) algorithm which has much lower computational complexity. The BDHLDA method is finally extended to the GMM domain, using the simpler TFC features during re-estimation to provide significantly improved computation speed. Experiments on NIST 2003 and 2007 LRE evaluation corpora show that TFC is more effective than SDC, and that the GMM-based BDHLDA results in lower equal error rate (EER) and minimum average cost (Cavg) than either TFC or SDC approaches.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 2 )

Date of Publication:

Feb. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.