By Topic

Decentralized Sparse Signal Recovery for Compressive Sleeping Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qing Ling ; Dept. of Autom., Univ. of Sci. & Technol. of China, Hefei, China ; Zhi Tian

This paper develops an optimal decentralized algorithm for sparse signal recovery and demonstrates its application in monitoring localized phenomena using energy-constrained large-scale wireless sensor networks. Capitalizing on the spatial sparsity of localized phenomena, compressive data collection is enforced by turning off a fraction of sensors using a simple random node sleeping strategy, which conserves sensing energy and prolongs network lifetime. In the absence of a fusion center, sparse signal recovery via decentralized in-network processing is developed, based on a consensus optimization formulation and the alternating direction method of multipliers. In the proposed algorithm, each active sensor monitors and recovers its local region only, collaborates with its neighboring active sensors through low-power one-hop communication, and iteratively improves the local estimates until reaching the global optimum. Because each sensor monitors the local region rather than the entire large field, the iterative algorithm converges fast, in addition to being scalable in terms of transmission and computation costs. Further, through collaboration, the sensing performance is globally optimal and attains a high spatial resolution commensurate with the node density of the original network containing both active and inactive sensors. Simulations demonstrate the performance of the proposed approach.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 7 )