Cart (Loading....) | Create Account
Close category search window
 

Maximum Likelihood Model Selection for 1-Norm Soft Margin SVMs with Multiple Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Glasmachers, T. ; Dalle Molle Inst. for Artificial Intell. (IDSIA), Lugano, Switzerland ; Igel, C.

Adapting the hyperparameters of support vector machines (SVMs) is a challenging model selection problem, especially when flexible kernels are to be adapted and data are scarce. We present a coherent framework for regularized model selection of 1-norm soft margin SVMs for binary classification. It is proposed to use gradient-ascent on a likelihood function of the hyperparameters. The likelihood function is based on logistic regression for robustly estimating the class conditional probabilities and can be computed efficiently. Overfitting is an important issue in SVM model selection and can be addressed in our framework by incorporating suitable prior distributions over the hyperparameters. We show empirically that gradient-based optimization of the likelihood function is able to adapt multiple kernel parameters and leads to better models than four concurrent state-of-the-art methods.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 8 )

Date of Publication:

Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.