By Topic

Coded Strobing Photography: Compressive Sensing of High Speed Periodic Videos

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Veeraraghavan, A. ; Mitsubishi Electr. Res. Labs., Cambridge, MA, USA ; Reddy, D. ; Raskar, R.

We show that, via temporal modulation, one can observe and capture a high-speed periodic video well beyond the abilities of a low-frame-rate camera. By strobing the exposure with unique sequences within the integration time of each frame, we take coded projections of dynamic events. From a sequence of such frames, we reconstruct a high-speed video of the high-frequency periodic process. Strobing is used in entertainment, medical imaging, and industrial inspection to generate lower beat frequencies. But this is limited to scenes with a detectable single dominant frequency and requires high-intensity lighting. In this paper, we address the problem of sub-Nyquist sampling of periodic signals and show designs to capture and reconstruct such signals. The key result is that for such signals, the Nyquist rate constraint can be imposed on the strobe rate rather than the sensor rate. The technique is based on intentional aliasing of the frequency components of the periodic signal while the reconstruction algorithm exploits recent advances in sparse representations and compressive sensing. We exploit the sparsity of periodic signals in the Fourier domain to develop reconstruction algorithms that are inspired by compressive sensing.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 4 )