By Topic

Learning Linear Discriminant Projections for Dimensionality Reduction of Image Descriptors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongping Cai ; 3rd Dept., Nat. Univ. of Defense Technol., Changsha, China ; Mikolajczyk, K. ; Matas, J.

In this paper, we present Linear Discriminant Projections (LDP) for reducing dimensionality and improving discriminability of local image descriptors. We place LDP into the context of state-of-the-art discriminant projections and analyze its properties. LDP requires a large set of training data with point-to-point correspondence ground truth. We demonstrate that training data produced by a simulation of image transformations leads to nearly the same results as the real data with correspondence ground truth. This makes it possible to apply LDP as well as other discriminant projection approaches to the problems where the correspondence ground truth is not available, such as image categorization. We perform an extensive experimental evaluation on standard data sets in the context of image matching and categorization. We demonstrate that LDP enables significant dimensionality reduction of local descriptors and performance increases in different applications. The results improve upon the state-of-the-art recognition performance with simultaneous dimensionality reduction from 128 to 30.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 2 )