By Topic

Pattern recognition for classifying the condition of wooden railway sleepers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yella, S. ; Dept. of Comput. Eng., Dalarna Univ., Borlange, Sweden ; Rahman, A.S. ; Dougherty, M.

This paper summarises the results of using a pattern recognition approach for classifying the condition of wooden railway sleepers. Railway sleeper inspections are currently done manually; visual inspection being the most common approach, with some deeper examination using an axe to judge the condition. Digital images of the sleepers were acquired to compensate for the human visual capabilities. Appropriate image analysis techniques were applied to further process the images and necessary features such as number of cracks, crack length etc have been extracted. Finally a pattern recognition and classification approach has been adopted to further classify the condition of the sleeper into classes (good or bad). A Support Vector Machine (SVM) using a Gaussian kernel has achieved good classification rate (86%) in the current case.

Published in:

Multimedia Computing and Information Technology (MCIT), 2010 International Conference on

Date of Conference:

2-4 March 2010