By Topic

A gate-level simulation environment for alpha-particle-induced transient faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hungse Cha ; Comput. Syst. Lab., Hewlett-Packard Co., Cupertino, CA, USA ; Rudnick, E.M. ; Patel, J.H. ; Iyer, R.K.
more authors

Mixed analog and digital mode simulators have been available for accurate α-particle-induced transient fault simulation. However, they are not fast enough to simulate a large number of transient faults on a relatively large circuit in a reasonable amount of time. In this paper, we describe a gate-level transient fault simulation environment which has been developed based on realistic fault models. Although the environment was developed for α-particle-induced transient faults, the methodology can be used for any transient fault which can be modeled as a transient pulse of some width. The simulation environment uses a gate level timing fault simulator as well as a zero-delay parallel fault simulator. The timing fault simulator uses logic level models of the actual transient fault phenomenon and latch operation to accurately propagate the fault effects to the latch outputs, after which point the zero-delay parallel fault simulator is used to speed up the simulation without any loss in accuracy. The environment is demonstrated on a set of ISCAS-89 sequential benchmark circuits

Published in:

Computers, IEEE Transactions on  (Volume:45 ,  Issue: 11 )