By Topic

Streaming 3D shape deformations in collaborative virtual environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ziying Tang ; Comput. Sci. Dept., Univ. of Texas at Dallas, Dallas, TX, USA ; Guodong Rong ; Guo, Xiaohu ; Prabhakaran, B.

Collaborative virtual environment has been limited on static or rigid 3D models, due to the difficulties of real-time streaming of large amounts of data that is required to describe motions of 3D deformable models. Streaming shape deformations of complex 3D models arising from a remote user's manipulations is a challenging task. In this paper, we present a framework based on spectral transformation that encodes surface deformations in a frequency format to successfully meet the challenge, and demonstrate its use in a distributed virtual environment. Our research contributions through this framework include: i) we reduce the data size to be streamed for surface deformations since we stream only the transformed spectral coefficients and not the deformed model; ii) we propose a mapping method to allow models with multi-resolutions to have the same deformations simultaneously; iii) our streaming strategy can tolerate loss without the need for special handling of packet loss. Our system guarantees real-time transmission of shape deformations and ensures the smooth motions of 3D models. Moreover, we achieve very effective performance over real Internet conditions as well as a local LAN. Experimental results show that we get low distortion and small delays even when surface deformations of large and complicated 3D models are streamed over lossy networks.

Published in:

Virtual Reality Conference (VR), 2010 IEEE

Date of Conference:

20-24 March 2010