Cart (Loading....) | Create Account
Close category search window
 

An empirical evaluation of virtual hand techniques for 3D object manipulation in a tangible augmented reality environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Taejin Ha ; U-VR Lab., GIST, Gwangju, South Korea ; Woontack Woo

In this paper, we present a Fitts' law-based formal evaluation process and the corresponding results for 3D object manipulation techniques based on a virtual hand metaphor in a tangible augmented reality (TAR) environment. Specifically, we extend the design parameters of the 1D scale Fitts' law to 3D scale and then refine an evaluation model in order to bring generality and ease of adaptation to various TAR applications. Next, we implement and compare standard TAR manipulation techniques using a cup, a paddle, a cube, and a proposed extended paddle prop. Most manipulation techniques were well-modeled in terms of linear regression according to Fitts' law, with a correlation coefficient value of over 0.9. Notably, the throughput by ISO 9241-9 of the extended paddle technique peaked at around 1.39 to 2 times higher than in the other techniques, due to the instant 3D positioning of the 3D objects. In the discussion, we subsequently examine the characteristics of the TAR manipulation techniques in terms of stability, speed, comfort, and understanding. As a result, our evaluation process, results, and analysis can be useful in guiding the design and implementation of future TAR interfaces.

Published in:

3D User Interfaces (3DUI), 2010 IEEE Symposium on

Date of Conference:

20-21 March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.