Cart (Loading....) | Create Account
Close category search window
 

Cleaner production via industrial symbiosis in glass and largescale solar photovoltaic manufacturing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nosrat, A.H. ; Dept. of Mech. & Mater. Eng., Queen''s Univ., Kingston, ON, Canada ; Jeswiet, J. ; Pearce, J.M.

In order to alleviate production costs and increase the environmental performance of solar photovoltaic manufacturing, an eco-industrial park for GW-scale production of PV is proposed. This article quantifies the inputs and outputs for the glass manufacturing component of such a system using standard manufacturing techniques. Utilizing industrial symbiosis in this way, potential reductions for such a plant were found to be about 30,000 tons/year in raw materials and over 220,000 GJ/year in embodied energy.

Published in:

Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Conference

Date of Conference:

26-27 Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.