We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Performance prediction. A case study using a scalable shared-virtual memory machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xian-He Sun ; Dept. of Comput. Sci., Louisiana State Univ. Baton Rouge, LA, USA ; Jianping Zhu

As computers with tens of thousands of processors successfully deliver high performance power for solving some of the so called “grand challenge” applications, scalability is becoming an important metric in the evaluation of parallel architectures and algorithms. The authors carefully investigate the prediction of scalability and its application. With a simple formula, they show the relation between scalability, single processor computing power, and degradation of parallelism. They conduct a case study on a multi ring KSR-1 shared virtual memory machine. However, the prediction formula and methodology proposed in the study are not bound to any algorithm or architecture. They can be applied to any algorithm-machine combination. Experimental and theoretical results show that the influence of variation of ensemble size is predictable. Therefore, the performance of an algorithm on a sophisticated, hierarchical architecture can be predicted, and the best algorithm-machine combination can be selected for a given application

Published in:

Parallel & Distributed Technology: Systems & Applications, IEEE  (Volume:4 ,  Issue: 4 )