By Topic

VLSI implementation of discrete wavelet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Grzeszczak ; Dept. of Electr. Eng., Ottawa Univ., Ont., Canada ; M. K. Mandal ; S. Panchanathan

This paper presents a VLSI implementation of discrete wavelet transform (DWT). The architecture is simple, modular, and cascadable for computation of one or multidimensional DWT. It comprises of four basic units: input delay, filter, register bank, and control unit. The proposed architecture is systolic in nature and performs both high- and low-pass coefficient calculations with only one set of multipliers. In addition, it requires a small on-chip interface circuitry for interconnection to a standard communication bus. A detailed analysis of the effect of finite precision of data and wavelet filter coefficients on the accuracy of the DWT coefficients is presented. The architecture has been simulated in VLSI and has a hardware utilization efficiency of 87.5%. Being systolic in nature, the architecture can compute DWT at a data rate of N/spl times/10/sup 6/ samples/s corresponding to a clock speed of N MHz.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:4 ,  Issue: 4 )