By Topic

Control of Continuum Models of Production Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
La Marca, M. ; Sch. of Math. & Stat. Sci., Arizona State Univ. Tempe, Tempe, AZ, USA ; Armbruster, D. ; Herty, M. ; Ringhofer, C.

A production system which produces a large number of items in many steps can be modelled as a continuous flow problem. The resulting hyperbolic partial differential equation (PDE) typically is nonlinear and nonlocal, modeling a factory whose cycle time depends nonlinearly on the work in progress. One of the few ways to influence the output of such a factory is by adjusting the start rate in a time dependent manner. We study two prototypical control problems for this case: (i) demand tracking where we determine the start rate that generates an output rate which optimally tracks a given time dependent demand rate and (ii) backlog tracking which optimally tracks the cumulative demand. The method is based on the formal adjoint method for constrained optimization, incorporating the hyperbolic PDE as a constraint of a nonlinear optimization problem. We show numerical results on optimal start rate profiles for steps in the demand rate and for periodically varying demand rates and discuss the influence of the nonlinearity of the cycle time on the limits of the reactivity of the production system. Differences between perishable and non-perishable demand (demand versus backlog tracking) are highlighted.

Published in:

Automatic Control, IEEE Transactions on  (Volume:55 ,  Issue: 11 )