By Topic

Low-Cost Calibration Techniques for Smart Temperature Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Michiel A. P. Pertijs ; Electronic Instrumentation Laboratory, Delft University of Technology, Delft, The Netherlands ; André L. Aita ; Kofi A. A. Makinwa ; Johan H. Huijsing

Smart temperature sensors generally need to be trimmed to obtain measurement errors below ±2°C. The associated temperature calibration procedure is time consuming and therefore costly. This paper presents two, much faster, voltage calibration techniques. Both make use of the fact that a voltage proportional to absolute temperature (PTAT) can be accurately generated on chip. By measuring this voltage, the sensor's actual temperature can be determined, whereupon the sensor can be trimmed to correct for its dominant source of error: spread in the on-chip voltage reference. The first calibration technique consists of measuring the (small) PTAT voltage directly, while the second, more robust alternative does so indirectly, by using an external reference voltage and the on-chip ADC. Experimental results from a prototype fabricated in 0.7 ¿m CMOS technology show that after calibration and trimming, these two techniques result in measurement errors (±3¿) of ±0.15°C and ±0.25°C, respectively, in a range from -55°C to 125°C.

Published in:

IEEE Sensors Journal  (Volume:10 ,  Issue: 6 )