Cart (Loading....) | Create Account
Close category search window

A Cubic 3-Axis Magnetic Sensor Array for Wirelessly Tracking Magnet Position and Orientation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chao Hu ; Key Lab. for Biomed. Inf. & Health Eng., CAS/CUHK, Shenzhen, China ; Mao Li ; Shuang Song ; Wan'an Yang
more authors

In medical diagnoses and treatments, e.g., endoscopy, dosage transition monitoring, it is often desirable to wirelessly track an object that moves through the human GI tract. In this paper, we propose a magnetic localization and orientation system for such applications. This system uses a small magnet enclosed in the object to serve as excitation source, so it does not require the connection wire and power supply for the excitation signal. When the magnet moves, it establishes a static magnetic field around, whose intensity is related to the magnet's position and orientation. With the magnetic sensors, the magnetic intensities in some predetermined spatial positions can be detected, and the magnet's position and orientation parameters can be computed based on an appropriate algorithm. Here, we propose a real-time tracking system developed by a cubic magnetic sensor array made of Honeywell 3-axis magnetic sensors, HMC1043. Using some efficient software modules and calibration methods, the system can achieve satisfactory tracking accuracy if the cubic sensor array has enough number of 3-axis magnetic sensors. The experimental results show that the average localization error is 1.8 mm.

Published in:

Sensors Journal, IEEE  (Volume:10 ,  Issue: 5 )

Date of Publication:

May 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.