By Topic

Numerical Simulation of the Mechanical Behavior of ITER Cable-In-Conduit Conductors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bajas, H. ; Lab. MSSMat, Ecole Centrale Paris, Chatenay-Malabry, France ; Durville, D. ; Ciazynski, D. ; Devred, A.

The unexpected degradations of current carrying capacity of Cable-In-Conduit Conductors are attributed to be mechanical in origin Nb3Sn. As a result, the prediction of conductor's performances asks for the assessment of the local strain state of the Nb3Sn superconducting strands inside cables. For this purpose, a finite element modeling, specially developed for the simulation of cable mechanics, is presented in this paper. The presented mechanical model allows simulating the conductors' service life from manufacturing to operating conditions by describing the evolution of strains and stresses within each individual strand. The distributions of axial strains within strands, obtained from simulation results of both thermal and Lorentz loadings, could help characterize the influence of design parameters.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:20 ,  Issue: 3 )