We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Decomposition abstraction in parallel rule languages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shiow-yang Wu ; Inst. of Comput. Sci. & Inf. Eng., Nat. Dong Hwa Univ., Hualien, Taiwan ; Miranker, D.P. ; Browne, J.C.

Decomposition abstraction is the process of organizing and specifying decomposition strategies for the exploitation of parallelism available in an application. In this paper we develop and evaluate declarative primitives for rule-based programs that expand opportunities for parallel execution. These primitives make explicit, implicit relations among the data and similarly among the rules. The semantics of the primitives are presented in a general object-based framework such that they may be applied to most rule-based programming languages. We show how the additional information provided by the decomposition primitives can be incorporated into a semantic-based dependency analysis technique. The resulting analysis reveals parallelism at compile time that is very difficult, if not impossible, to discover by traditional syntactic analysis techniques. Simulation results demonstrate scalable and broadly available parallelism

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 11 )