Cart (Loading....) | Create Account
Close category search window
 

Achieving full parallelism using multidimensional retiming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Passos, N.L. ; Dept. of Comput. Sci., Midwestern State Univ., Wichita Falls, TX, USA ; Sha, E.H.-M.

Most scientific and digital signal processing (DSP) applications are recursive or iterative. Transformation techniques are usually applied to get optimal execution rates in parallel and/or pipeline systems. The retiming technique is a common and valuable transformation tool in one-dimensional problems, when loops are represented by data flow graphs (DFGs). In this paper, uniform nested loops are modeled as multidimensional data flow graphs (MDFGs). Full parallelism of the loop body, i.e., all nodes in the MDFG executed in parallel, substantially decreases the overall computation time. It is well known that, for one-dimensional DFGs, retiming can not always achieve full parallelism. Other existing optimization techniques for nested loops also can not always achieve full parallelism. This paper shows an important and counter-intuitive result, which proves that we can always obtain full-parallelism for MDFGs with more than one dimension. This result is obtained by transforming the MDFG into a new structure. The restructuring process is based on a multidimensional retiming technique. The theory and two algorithms to obtain full parallelism are presented in this paper. Examples of optimization of nested loops and digital signal processing designs are shown to demonstrate the effectiveness of the algorithms

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 11 )

Date of Publication:

Nov 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.