Cart (Loading....) | Create Account
Close category search window
 

Static and dynamic evaluation of data dependence analysis techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Petersen, P.M. ; Kuck & Associates, Inc., Champaign, IL, USA ; Padua, D.A.

Data dependence analysis techniques are the main component of today's trategies for automatic detection of parallelism. Parallelism detection strategies are being incorporated in commercial compilers with increasing frequency because of the widespread use of processors capable of exploiting instruction-level parallelism and the growing importance of multiprocessors. An assessment of the accuracy of data dependence tests is therefore of great importance for compiler writers and researchers. The tests evaluated in this study include the generalized greatest common divisor test, three variants of Banerjee's test, and the Omega test. Their effectiveness was measured with respect to the Perfect Benchmarks and the linear algebra libraries, EISPACK and LAPACK. Two methods were applied, one using only compile-time information for the analysis, and the second using information gathered during program execution. The results indicate that Banerjee's test is for all practical purposes as accurate as the more complex Omega test in detecting parallelism. However, the Omega test is quite effective in proving the existence of dependences, in contrast with Banerjee's test, which can only disprove, or break dependences. The capability of

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 11 )

Date of Publication:

Nov 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.