By Topic

Surface-Wavefield Estimation From Coherent Marine Radars

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nwogu, O.G. ; Dept. of Naval Archit. & Marine Eng., Univ. of Michigan, Ann Arbor, MI, USA ; Lyzenga, D.R.

One major impediment to using marine radars for real-time shipboard measurements of evolving ocean wavefields is the uncertainty in the transfer function that relates the radar cross section to sea-surface height. In this letter, a more direct approach is proposed to infer nonlinear sea-surface heights by using radial-velocity measurements from coherent marine radars. The radial velocities are initially integrated along range lines to obtain a scalar potential function. The velocity potential field is then differentiated with respect to time to yield the sea-surface height. Numerical simulations have been conducted to evaluate the sensitivity of the proposed scheme to sampling errors and noise. Under idealized conditions, the results demonstrate that the sea-surface elevation can be reliably estimated from the radial-velocity field provided that the antenna-rotation period is much smaller than a characteristic wave period.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:7 ,  Issue: 4 )